High Power Femtosecond Fiber Chirped Pulse Amplification System for High Speed Micromachining

نویسندگان

  • Lawrence SHAH
  • Martin E. FERMANN
چکیده

The need for improved precision in a wide variety of micromachining applications has driven scientific interest in ultrashort pulse lasers. Despite numerous demonstrations of reduced heat effect and improved processing quality, the utility of such lasers has been limited by the heavy demands placed upon laser performance. In addition to high contrast laser pulses with minimal pulse-to-pulse fluctuation, an ultrashort pulse laser must provide near diffraction-limited beam quality and robust long-term laser operation with high repetition rate for high processing speeds. We report here on a research prototype, high power femtosecond fiber chirped pulse amplification system. The system produces compressed pulses with energies >50 μJ at >15 W with M <1.4. The use of cubicon pulses, i.e. stretched pulses with cubical spectral and temporal shape, enables pulse compression to <500 fs with >1000:1 temporal contrast despite significant self-phase modulation during amplification corresponding to a nonlinear phase delay of ~6π. As a demonstration of high speed femtosecond micromachining, we drill and cut 0.5-mm thick metal, semiconductor and dielectric targets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Micromachining with a High Repetition Rate Femtosecond Fiber Laser

Industrial micromachining applications with ultrashort pulse lasers are often difficult to make practical due to the lack of robustness of the laser and the slow processing speed resulting from the low repetition rate. In the past, amplified, femtosecond lasers produced high pulse energies, but at a slow pulse repetition rate of around a kHz. The high repetition rate oscillators did not have en...

متن کامل

High power 2 µm femtosecond fiber laser.

A high power polarization maintaining femtosecond Tm-doped fiber laser system is demonstrated. A chirped fiber Bragg grating with normal dispersion was used to compensate the anomalous dispersion from the regular fiber in the 2 µm seed oscillator to generate mode locked pulses with a pulse repetition rate of 30.84 MHz. After chirped pulse amplification, an amplified power of 78 W was obtained. ...

متن کامل

High power femtosecond chirped pulse amplification in large mode area photonic bandgap Bragg fibers

We report on high power amplification of femtosecond pulses in 40-μm core diameter Yb-doped photonic bandgap Bragg fibers. The robustness to bending and transverse spatial behavior of these fibers is analyzed through simulations. The fibers are used in both stages of a moderately stretched (150 ps) femtosecond chirped pulsed amplification (CPA) system. A compressed average power of 6.3 W is obt...

متن کامل

Chirped-pulse-amplification circuits for fiber amplifiers, based on chirped-period quasi-phase-matching gratings.

A new type of compact chirped-pulse-amplification circuit for high-power amplification of femtosecond pulses in an optical fiber is demonstrated. This circuit is based on a novel pulse compressor, chirped-period quasi-phase-matching gratings in electric-field-poled lithium niobate. The main advantages of this circuit are simplicity, the small number of components, compactness, and wavelength co...

متن کامل

Chirped-pulse oscillators for the generation of high-energy femtosecond laser pulses

This paper reports on a novel approach for producing high energy femtosecond pulses without external amplification. The so-called chirped-pulse oscillator ~CPO! concept is based on an extended-cavity oscillator, operating at small net positive intracavity group delay dispersion ~GDD!, over a broad spectral range by the use of chirped multilayer mirrors. The resultant chirped picosecond pulses a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007